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The recent Boundary-Layer-Ingesting Inlet/Distortion Tolerant Fan wind tunnel 

experiment at NASA Glenn Research Center’s 8-foot by 6-foot supersonic wind tunnel 

examined the performance of a novel inlet and fan stage that was designed to ingest the vehicle 

boundary layer in order to take advantage of a predicted overall propulsive efficiency benefit.  

A key piece of the experiment’s instrumentation was a pair of rotating rake arrays located 

upstream and downstream of the fan stage. This paper examines the development of these 

rake arrays. Pre-test numerical solutions were sampled to determine placement and spacing 

for rake pressure and temperature probes.  The effects of probe spacing and survey density 

on the repeatability of survey measurements was examined.  These data were then used to 

estimate measurement uncertainty for the adiabatic efficiency. 

 

Nomenclature 

A = area 

fs = stretch factor 

PT = total pressure, psia 

PS =  static pressure, psia 

M =  Mach number 

m = number of rakes in the array 

�̇� = mass flow, lbm/sec 

n =  number of probes in the rake 

Q = generic pressure or temperature 

r = radius 

rhub = radius at inner (hub) wall 

rcasing = radius at outer (casing) wall 

R = gas constant for air, = 1716.6 ft lbf slug-1 R-1 

sP = stage pressure ratio, = 𝑃𝑇,𝐹𝐸𝑅𝑅𝐴/𝑃𝑇,𝐴𝐼𝑃𝑅𝑅𝐴 

sT = stage temperature ratio, = 𝑇𝑇,𝐹𝐸𝑅𝑅𝐴/𝑇𝑇,𝐴𝐼𝑃𝑅𝑅𝐴 

TT = total temperature, R 

U = uncertainty 

ηA = adiabatic efficiency 

γ = ratio of specific heats, = 1.4 
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I. Introduction 

 multi-disciplinary team from NASA’s Glenn Research Center, United Technology Research Center (UTRC), 

Virginia Tech University, and the Arnold Engineering Development Complex have designed, built and recently 

tested a new propulsor to demonstrate the benefits of boundary layer ingestion.  The Boundary-Layer-Ingesting 

Inlet/Distortion Tolerant Fan (BLI2DTF) experiment was conducted in the 8-foot by 6-foot Supersonic Wind Tunnel 

at the NASA Glenn Research Center in November and December of 2016.  

The propulsor in this experiment comprised a short non-axisymmetric inlet closely coupled to a single-stage low-

pressure-ratio fan, and a plug-type nozzle for flow control.  This experimental hardware was mounted to a compressed-

air-powered drive rig.  This propulsor was embedded in a raised floor with flow effectors and a bleed system to control 

the thickness of the boundary layer.  Figure 1 shows the BLI2DTF experimental setup in the 8x6 wind tunnel.  Figure 

2 shows a cross-sectional view of the BLI2DTF propulsor. 

Previous studies1,2,3,4 have shown that boundary layer ingestion offers a potential 3-5% fuel burn reduction benefit 

relative to a conventional engine installation for a large transport aircraft at current technology levels. The objective 

of the research task was to assess a BLI2DTF system relative to that potential fuel burn benefit. This assessment was 

done by 1) collecting performance data from the wind tunnel test of the boundary-layer-ingesting propulsor; 2) using 

those data to determine inlet recovery, fan stage pressure and temperature ratios, and fan stage efficiency; and 3) 

determining the overall propulsive efficiency and through system studies, fuel burn of a candidate vehicle through a 

simulated mission profile. 

The primary research objective of the BLI2DTF wind tunnel experiment was to acquire fan-stage performance data 

at cruise conditions. Secondary research objectives included obtaining fan-stage performance data at other fan 

conditions, collecting data to determine the stall margin along the operating line, and assessing the operability of the 

fan over a wide range of conditions, noting areas of aerodynamic or aeromechanical instability. 

A key to meeting these objectives was accurate measurement of the flow conditions upstream and downstream of 

the fan stage.  To accomplish this, two rotating rake arrays were included in the experiment: the Aerodynamic Interface 

Plane Rotating Rake Array (AIPRRA) and the Fan-stage Exit Rotating Rake Array (FERRA).  This paper will describe 

the process used by the authors to establish the number of rakes, probe types and spacing on those rakes, and the 

density of measurements circumferentially to adequately measure the flow field properties. 

II. Adiabatic Efficiency Challenges in the BLI2DTF Experiment 

 

The equation for adiabatic efficiency of a fan stage is: 

 

 𝜂𝐴 =
𝑠𝑃

𝛾−1
𝛾
−1

𝑠𝑇−1
 (1) 

 

For pressure and temperature ratios near unity, the terms become small and sensitive to small errors as shown in 

fig. 3.  Therefore, on a low-pressure-ratio fan, measuring fan stage adiabatic efficiency requires very accurate 

measurements of the total conditions both upstream and downstream of the fan stage.  Hence, one of the key 

instrumentation systems of this successful test was a pair of rotating rake arrays, one each upstream and downstream 

of the fan stage.  These arrays were rotated during fan operation to survey the flow fields entering and exiting the fan 

stage.   

In a conventional fan system, performance parameters such as pressure and temperature ratios and adiabatic 

efficiency are calculated from averaged total pressure and temperature at the fan entrance and exit.  The use of 

averaging and even the type of weighting used for averaging is generally not very important, as the flow fields 

measured are uniform enough that the resulting values are nearly identical.  For a highly distorted fan flow, such as 

that ingested by the BLI2DTF fan, however, this is not the case.   

III. Design of the Rake Arrays 

 

Figure 4 shows a front view of the BLI2DTF propulsor.  Figure 5 shows a close-up view of the portion of the 

experimental apparatus most relevant to this study.  Shown from forward to aft are 1) AIPRRA, 2) fan, 3) Exit Guide 

Vanes (EGVs), and 4) FERRA.  

A 
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The designs of the AIPRRA and FERRA were based on a similar, smaller-diameter rotating rake array used in 

previous experiments.  As shown in fig. 6, the rakes were fixed to a cylindrical spool, projecting inward from the 

casing toward the hub.  The spool which was driven by a geared motor, which was capable of rotating the rakes during 

fan operation.  The rakes were equally spaced circumferentially with probes arranged along the centerline of each 

rake.  All measurements were made at the same axial plane.  Pressure tubes from the rakes were routed to transducer 

modules mounted on the outer surface of the spool, while wires from thermocouples and dynamic pressure transducers 

were routed to modules external to the model.  All wires and tubes going from the spool to external destinations were 

contained in a flexible cable carrier with a U-shaped bend, allowing array rotation of  ±140°.  Wherever practical, the 

designs of the AIPRRA and FERRA were identical.  However, some factors which influenced the design of the 

rotating rake arrays were unique to either the AIPRRA or FERRA.    

A. Common Factors Influencing Both Rotating Rake Array Designs 

 

Compactness – it was important to keep the axial length of the rotating rake arrays short.  For the AIPRRA this 

requirement stems from the need to keep the inlet and fan together as they were designed to be closely-coupled.  To 

this end, the wind tunnel experiment included configurations 1) with the full AIPRRA, 2) with the AIPRRA spool but 

no rakes, and 3) without the AIPRRA to determine the effect of the AIPRRA on the experiment. For the FERRA, a 

long axial length might have reduced the space available for the nozzle. 

Instrumentation Routing – The amount of instrumentation was limited by the size of passages to route the 

instrumentation tubes and wires from the sensor to the data acquisition system.  For the rotating rake arrays the limiting 

locations were the passages within the rakes (designed to have adequate wall thickness to withstand testing and to 

limit duct blockage) and around the perimeter of the rotating rake array spools (designed to limit test section blockage).  

To counter these limitations, all of the desired radial measurement positions were spread across multiple rake types, 

and the rake array was rotated to allow each of the rake types to sample at each circumferential location.  In addition 

to effectively increasing the radial resolution of the measurement grid, for the FERRA this approach enabled non-

simultaneous measurement of total pressure and total temperature at the same locations. 

Probe Interference – It was necessary to have a minimum distance between rake probes to prevent one probe from 

influencing its neighbors’ measurements. 

B. Specific Factors Influencing the AIPRRA Design 

 

Spinner – The hub at the AIPRRA was part of an extended spinner which rotated with the fan.  Therefore it was 

impractical to measure static pressure at the hub. 

ARP 1420 - For comparison with historical AIP data, conformance with the ARP 14205 standard for probe 

placement was required.  ARP 1420 specifies a pattern of 40 measurement locations for calculating distortion, five 

rings with measurements at eight circumferential locations, with all locations at the centers of equal-area zones.  

Additionally, because dynamic distortion levels were of interest in this experiment, both steady and dynamic total 

pressures were measured at these locations. 

Temperatures - The total temperatures at the AIP were assumed to be nearly uniform.  Therefore, only one 

thermocouple was present in each AIPRRA rake. 

Flow Angularity - Computational Fluid Dynamics (CFD) predictions showed up to ±25° flow angularity, albeit 

this angularity was mostly confined to the region near the centerline at the bottom of the inlet.  For this reason, a three-

hole flow angularity probe was included on each AIPRRA rake.  By comparison, the predicted flow angularity at the 

FERRA plane was no more than ±4°.   

Risk to the Fan – The presence of rakes upstream of a fan carries a risk of damage to the fan should any part of a 

rake separate.  To mitigate this risk, special attention was given to the design and analysis of a strong rake, and a 

unique vibration-damping mounting system was developed. 

C. Specific Factors Influencing the FERRA Design 

 

Flow Measurement – It was determined that the most accurate method of air flow measurement for this experiment 

was by integration of the measured conditions at the FERRA.  Therefore it was necessary to analyze the FERRA 

measurements with respect to the mass flow as well as the average total pressure and total temperature conditions. 

Axial Location – With static pressure measurements only at the hub and casing, flow measurement at the FERRA 

becomes highly dependent on the assumption that the static pressure at interior points can be estimated from those 

measurements.  As the flow exits the EGVs the static pressure varies greatly.  Downstream, the variations in static 
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pressure dissipate.  Therefore, it was necessary to determine the effect of the axial location on the measurement of 

weight flow. 

D. Details of the Rotating Rake Array Designs 

 

There were two types of AIPRRA rakes, labelled 176 and 177, which differed in the arrangement and spacing of 

the rake probes, as shown in fig. 7 and Table 1.  Instrumentation on the AIPRRA rakes consisted of five Prati6 probes 

(a combination total pressure probe housing a dynamic pressure transducer and a steady state pressure tube), four pitot 

probes, one total temperature probe, and one three-hole flow angularity probe.  All probes except the angularity probe 

and the pitot probe nearest the base on rake type 176 were enclosed in Kiel7 shields.   

 
Table 1. Arrangement of Probes on the AIPRRA Rakes 

Tube Type 

Radius, in 

Rake 176 Rake 177 

PT 3.727 3.492 

Prati 4.620 4.620 

PT 6.022 5.367 

TT -- 5.962 

Prati 6.612 6.612 

3 Hole -- 7.082 

PT 7.348 -- 

Prati 8.130 8.130 

TT 8.766 -- 

PT -- 8.848 

Prati 9.406 9.406 

3 Hole 9.876 -- 

PT -- 9.968 

Prati 10.529 10.529 

PT 10.855 -- 

 

 

The number of the AIPRRA rakes was set at eight, and five Prati probes were placed at the centers of equal-area 

regions. All other probes on the AIPRRA rakes were then placed where the probe-to-probe interference criteria would 

permit. 

Instrumention on the FERRA rakes consisted typically of an equal number of total pressure and total temperature 

probes arranged in alternating fashion.  Examples of the FERRA rakes are shown in fig. 8.  Depicted are two types of 

rake, labelled 273 and 274. Two additional types, 275 and 276, had probes in the same locations as 273 and 274, 

except that the pitot and total temperature probes were reversed, and type 275 lacked a total temperature probe nearest 

the base of the rake.  Table 2 describes the arrangement of probes on the FERRA rakes in further detail.  All probes 

except the pitot probe nearest the base on rake type 273 were Kiel probes to allow accurate measurement of total 

conditions even in the presence of non-axial flow.  
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Table 2. Arrangement of Probes on the FERRA Rakes 

Radius, in 

Tube Type 

Radius, in 

Tube Type 

Rake 273 Rake 275 Rake 274 Rake 275 

5.530 TT PT 5.220 TT PT 

6.151 PT TT 5.840 PT TT 

6.771 TT PT 6.462 TT PT 

7.384 PT TT 7.079 PT TT 

7.981 TT PT 7.685 TT PT 

8.554 PT TT 8.271 PT TT 

9.093 TT PT 8.828 TT PT 

9.593 PT TT 9.349 PT TT 

10.049 TT PT 9.827 TT PT 

10.457 PT TT 10.259 PT TT 

10.816 TT PT 10.643 TT PT 

11.050 PT -- 10.978 PT TT 

 

 

Static pressure ports were located at the base of each rake, at the probe measurement plane on the casing surface 

of the rotating rake spool.  For the FERRA, static pressure ports were also located along the hub surface at the probe 

measurement plane.  For the AIPRRA, there were no static-pressure ports on the hub.   

 

IV. Simulated Surveys Using CFD Datasets 

 

The objectives of the simulated surveys were two-fold: to establish appropriate array geometry and operating 

procedures to meet test objectives, and to assess the impact of these choices on the overall uncertainty of the surveyed 

data.   

In an effort to determine appropriate spacing of sensors on the survey rakes and to establish required survey 

density, the authors developed software to simulate rake surveys by sampling from pre-test CFD solutions. CFD cases 

used for this study came from time-accurate, full-circumference solutions by UTRC, using UTCFD, a Reynolds-

averaged Navier-Stokes solver using the k-ω turbulence model. To reduce the complexity of the study and better 

reflect steady-state data acquisition to be used in the subsequent wind tunnel experiment, the CFD solutions were 

time-averaged.   

Two rounds of simulations were used.  The first round, based on CFD of a conventional inlet and fan exposed to 

an ingested boundary layer, was performed while awaiting the completion of the BLI2DTF fan design and 

accompanying CFD.  These simulated surveys were used to test the software and draw some initial conclusions about 

the FERRA design.  The primary variables in these initial explorations were the number of circumferential 

measurements using an eight-rake array and the number of radial measurements.  Table 3 summarizes these variables. 

 
Table 3. Conditions Simulated in the Round 1 FERRA Study 

Variable Values 

Number of radial measurements 2 to 12 in increments of 2 

Number of circumferential measurements 8 to 176 in increments of 8 

 

The second round of survey simulatons was based on CFD of the BLI2DTF inlet and fan stage. The relevant 

conditions from the second-round CFD are shown in fig. 9.  These surveys further explored the FERRA design with 

more detailed exploration of the parametric variables summarized in Table 4. Each of these variables was selected to 

answer questions related to the FERRA design.  Additional surveys also explored the AIPRRA design, which was 

more constrained than the FERRA.  Because of these constraints, the AIPRRA survey simulations examined specific 

arrangements of rake probes rather than broader explorations of multiple design parameters.  The results of the second 

round surveys were used to determine the contribution of the survey process to the uncertainties of the aerodynamic-
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interface-plane and fan-stage-exit-plane average total pressures and total temperatures, leading to an assessment of 

the overall uncertainty of the adiabatic efficiency measurements. 

 
Table 4. Conditions Simulated in the Round 2 FERRA Study 

Variable Values 

Axial Station 14.1”, 14.6”, 15.2”, 15.6”, 16.1” 

downstream of fan stacking axis 

Number of circumferential measurements 9 to 153 in increments of 9 

Number of radial measurements 6, 12, 18 

Stretch factor, fs 0.125, 0.25, 0.5, 0.75, 1.0 

 

The following paragraphs describe the processing of the simulated survey data.  Figure 10 shows a flowchart of 

the survey algorithm.  The large letters in the figure are used to refer to steps in the process. 

In step A the CFD data was read, relevant variables such as total and static pressures and temperatures, and 

velocities were calculated.  From these, elemental mass flow rates were calculated and summed across the 

measurement planes.   

Each combination of the variables in the tables above was referred to as a case.  For each case (step B), the 

distributions of probes, i.e. their radial positions on each rake, were calculated.   For each pressure probe, including 

the static pressure ports at the walls, a portion of the annulus area was assigned to the probe as described in Eq. 2 and 

illustrated in fig. 11. This formulation sets the dividing line between areas as the average of r2 values of the adjacent 

probes. 

 

 𝐴𝑖 =

{
 
 

 
 

𝜋(𝑟1
2−𝑟0

2)

2𝑚
𝑓𝑜𝑟 𝑖 = 0 (ℎ𝑢𝑏)

𝜋(𝑟𝑖+1
2 −𝑟𝑖−1

2 )

2𝑚
𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛

𝜋(𝑟𝑛+1
2 −𝑟𝑛

2)

2𝑚
𝑓𝑜𝑟 𝑖 = 𝑛 + 1 (𝑐𝑎𝑠𝑖𝑛𝑔)

 (2) 

The baseline distribution of probes on the rakes was at the centers of equal areas.  A hyperbolic tangent function 

was applied to the baseline distribution using the method of Vinokur8, where the change to the distribution was 

specified by a “stretch factor”.  This stretch factor was a multiplier for the spacing between the first probe on each end 

of the rake and the nearby wall.  That is, a stretch factor of 1.0 indicates unmodified equal-area distribution, while a 

stretch factor of 0.125 indicates dense packing toward the ends of the rakes.  

 

 𝑓𝑠 =

{
 

 
(𝑟1−𝑟0)|𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑒𝑑

(𝑟1−𝑟0)|𝑢𝑛𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑒𝑑
𝑓𝑜𝑟 𝑖 = 0 (ℎ𝑢𝑏)

(𝑟𝑛+1−𝑟𝑛)|𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑒𝑑

(𝑟𝑛+1−𝑟𝑛)|𝑢𝑛𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑒𝑑
𝑓𝑜𝑟 𝑖 = 𝑛+1 (𝑐𝑎𝑠𝑖𝑛𝑔)

 (3) 

 

For the rakes both in the experiment and in the simulated surveys, static pressure was only measured at the end 

walls.    From the rake geometries and sampled pressures and temperatures, areas and mass flux were calculated for 

each measurement location, and these were used to calculate area-weighted and mass-flux-weighted average total 

pressure and temperature for the fan entrance and exit planes.  The area-weighted averages were intended as an 

alternative to more intensive mass-weighted average calculations.  However, it was determined that the mass-weighted 

averages are more correct from a thermodynamic perspective, so only the mass-weighted averages will be discussed.  

The simulated surveys were performed at multiple starting locations in the circumferential direction, to simulate 

the effect of positional errors on the measured pressures and temperatures.  These locations are referred to as “offsets” 

in step C.  The goal of these studies was to find a combination of design and operational parameters where the effects 

of these positional errors, as measured by the standard deviation of the measured values, were minimized. 

The angular position of each of the eight AIPRRA or nine FERRA rakes was calculate in step D.  Then casing and 

hub (for the FERRA) static pressures were calculated by interpolation from the CFD flowfield.  This and all other 

interpolations of the CFD data to probe locations were calculated by the method of Keys9 for interior cells in the CFD 

grid and by linear interpolation for edge cells. 
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Static pressure was measured at the hub and case in the FERRA, but only at the case for the AIPRRA.  Therefore, 

static pressure at each of the rake probe positions was calculated by linear interpolation for the FERRA, whereas for 

the AIPRRA the case pressure was extrapolated as a constant across the rake.  Additional static pressure measurements 

were available on the AIPRRA with the inclusion of three-hole flow angularity probes, but these probes were added 

to the design later and were not included in this study.  To examine the implications of the assumption of a uniform 

static pressure in the radial direction, a separate calculation of the mass-averaged total pressure and total temperature 

was made using the local static pressure from the CFD solution.  This change was found to have a minimal effect on 

the averages.  The greatest gradient in static pressure in the radial direction was observed to be in the near-wall regions, 

where velocities were low and therefore their effect on mass-weighted quantities was limited.   

The total pressure, total temperature, and static pressure were calculated in step E by interpolation from the CFD 

data.  An alternate calculation of the static pressure was calculated in step F by linear interpolation of the hub and 

casing values for the FERRA or simply as the casing value for the AIPRRA. 

For the AIPRRA, data from the total temperature probes were interpolated/extrapolated to all of the pressure probe 

locations.  For those pressure probes where temperature data was available on either side, radially, a linear 

interpolation was used.  For those pressure probes where temperature data was available only on one side, that 

temperature value was used.  This extrapolation was justified by the assumption that the total temperatures should be 

reasonably uniform.  This sub-step was not necessary for the FERRA as the total temperature probes were placed at 

the same radial locations as the total pressure probes. 

Mach number and elemental mass flow rate at each probe location were calculated in step G.  These calculations 

were done for both static pressures calculated in steps E and F.  Mach number was calculated from static and total 

pressure as: 

 

 𝑀 = √
2

𝛾−1
[(
𝑃𝑇

𝑃𝑆
)

𝛾−1

𝛾
− 1]  (4) 

 

Mass flow rate was calculated as: 

 

 �̇� = √
𝛾(1+

𝛾−1

2
𝑀2)

𝑅𝑇𝑇
 𝑃𝑆𝑀𝐴 (5) 

Note that this formulation does not account for flow angularity, since the angularity probes were added to the 

design after this study.  Mass-averaged quantities of total pressure and total temperature were calculated as: 

 

 �̅� =
∑𝑄𝑖�̇�𝑖

∑�̇�𝑖
 (6) 

 

V. Results of the Simulated Surveys 

 

One topic of interest when using rotating rakes in a periodic flow field is the influence of starting position of the 

rakes on repeatability of the measured pressures and temperatures of the survey.  For this reason, both rounds of  

survey simulations were conducted at multiple starting positions, and the standard deviations of the measurements of 

total pressure and total temperature were assessed.   

Figures 12 and 13 show these standard deviations for a set of FERRA rakes in the first round simulated surveys as 

a function of the measurement density in the circumferential (x-axis) and radial (different symbols) directions.  In fig. 

12a, total pressure standard deviations are shown for a FERRA with eight rakes. From the figure it is clear that standard 

deviation follows a decaying curve, but there are spikes in the curve.  These spikes correspond to integer multiples of 

the 56 EGVs of the first round configuration.  Figure 12b shows the same results, except the number of FERRA rakes 

was nine.   The spikes are greatly reduced or avoided altogether.  Figure 13 shows the same comparison for total 

temperatures.  While less dramatic, this plot shows a similar reduction in standard deviations. 
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To better understand the results shown in figs. 12 and 13, imagine a simplified flowfield, represented in fig. 14.  

The grey bars represent diminished pressure in the wakes of 8 evenly spaced vanes.  If we sample the flow field at 8 

evenly spaced points, marked “A” in the figure, we will be sampling only from the wakes, and the averages of the 

sample will be biased low.  If we sample from 8 evenly spaced points, marked “B”, we will be sampling only from 

the undisturbed flow between wakes and the averages of the sample will be biased high.  The result of our sampling 

will be highly dependent on the starting position of our sample pattern and the standard deviation of multiple sample 

patterns will be high.  We will refer to this case as “in-phase” sampling.  If, on the other hand, we sample at 9 evenly 

spaced points, marked “C”, we will sample from a variety of positions relative to the wakes and averages of the sample 

will be reasonably representative of the entire flowfield.  We will refer to this case as “out-of-phase” sampling. 

From the first round simulations, it is clear that in-phase sampling should be avoided.  To address this, a decision 

was made to use a 9-rake FERRA.  It should be noted that to resolve all of the wakes behind the EGVs would require 

an extensive set of samples, but that was not the objective of the measurement.  The objective was to obtain sufficient 

samples such that the averages of the measured total pressures and total temperatures were representative of the 

FERRA-plane flowfield.  A combination of the results from the first round study and design evaluations led to the 

determination of the number of probes per rake for both the AIPRRA (10-11 probes per rake) and FERRA (11-12 

probes per rake). 

Figure 15 shows results from the second round of the study, in which simulated surveys were performed on CFD 

for the BLI2DTF propulsor.  Shown are standard deviations of mass flow, expressed as a percentage of the measured 

value, for a large number of parametric cases.  Four parametric variables are explored. Each diamond-shaped cluster 

represents a set of surveys all at the same values on the primary axes. The lowest point in the diamond pattern 

represents the actual value on the primary axes (number of circumferential measurements and axial station).  The rest 

of the points in the clusters represent variations in the secondary axes (number of circumferential measurements and 

stretch factor).  The color of the points represent the values of the standard deviation in mass flow. As with the round 

one studies, the standard deviation was reduced with increasing measurement density in both the radial and 

circumferential directions.  However, certain circumferential densities which were in phase or in-phase multiples of 

the number of EGVs show higher standard deviations.  Axial station made relatively little difference in the results, 

especially for points downstream of the first station at 14.1”.  The improvement to standard deviation that was seen 

with axial station appears to be due to the flattening of the static pressure profile with increasing axial station. 

Based on the results shown, the rakes were designed with a stretch factor of 0.5, at a minimum axial station of 14.6 

inches.  The results shown suggest that 18 measurements be used in the radial direction.  In the circumferential 

direction, a minimum of 54 measurements was recommended.  This point is indicated by the arrow in the figure. 

Uncertainty estimates for the adiabatic efficiency were calculated.  As in the first round study, the samples in the 

second round study were obtained using multiple rake-array starting positions.  The variance of these estimates from 

those of the CFD solution provided estimates of the uncertainty due to discretization of the AIPRRA and FERRA flow 

fields.  These were combined with uncertainty estimates of the instruments—±0.015 psi for absolute pressures and 

±0.9 R for temperatures at the 95% confidence level—to calculate uncertainty estimates at the 95% confidence level 

using Eq. 7.   

Figure 16 shows the results of adiabatic efficiency uncertainty calculations for the design cruise operating 

condition (100% speed) and four “corner points”, two each at 70% speed idle and 105% overspeed.  The uncertainty 

grows as fan speed is reduced primarily because the fan pressure and temperature ratios at lower speeds are closer to 

unity.  Thus, variations in those parameters have a greater effect on the calculated adiabatic efficiency. 

Figure 17 shows the results of the mass flow rate uncertainty calculations for same points as fig. 16.  For four of 

the five conditions the uncertainty values are virtually identical; for the choke point at idle, the value is approximately 

5% higher.   All of the values for uncertainty were deemed acceptable to meet the objectives of the BLI2DTF 

experiment.  

   

 𝑈𝑓(𝑎,𝑏,⋯ ) = √(
𝜕𝑓

𝜕𝑎
)
2

𝑈𝑎2 + (
𝜕𝑓

𝜕𝑏
)
2

𝑈𝑏
2 +⋯ (7) 

VI. Comparison of the Surveyed Experiment to Surveyed CFD and the Full Resolution CFD 

 

Figures 18 and 19 show contours of total pressure and total temperature, respectively, at the AIPRRA plane for a) 

the BLI2DTF CFD, b) the BLI2DTF CFD interpolated onto the experimental probe locations, and c) the BLI2DTF 

experimental data corrected to the CFD freestream conditions.  The CFD and CFD interpolated plots suggest that the 

loss of resolution when sampling the flowfield does not significantly alter the shape of the contours within the region 
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covered by the experimental grid.  There are some differences between the CFD and the experimental results.   The 

boundary layer in the experiment appears to be thicker, and the range of pressures appears smaller, suggesting a lower 

overall distortion level. However, the shape of the distortion region is similar between the CFD and experiment.  The 

radial density of the experimental measurements was sufficient to capture several points in the boundary layer.   

Figures 20 and 21 show contours of total pressure and total temperature, respectively, at the FERRA plane for a) 

the BLI2DTF CFD, b) the BLI2DTF CFD interpolated onto the experimental probe locations, and c) the BLI2DTF  

experimental data corrected to the CFD freestream conditions.  The experimental grid, while relatively dense for 

turbomachinery measurements, was insufficiently dense circumferentially to capture the wakes of all 56 EGVs.  

Nevertheless, survey results show that the calculated average conditions and mass flow rate can be calculated 

accurately from this level of detail.  Further, while somewhat different in pressure values, the CFD predicted the shape 

of the flow structures.  This finding leads the authors to assert that the results obtained in the simulated surveys is 

representative of the actual surveys for the purpose of averaging.  

VII. Conclusions 

 

Low pressure ratio fans require precise performance measurements for accurate calculations of fan-stage 

performance.  Rotating rake arrays provide a means to make precise measurements, but certain cautions should be 

observed.  First, if the array is downstream of the fan stage, the number and/or placement of the rakes should be 

adjusted to ensure that they do not correspond with the number and/or positions of wakes and other flow features (i.e. 

“in-phase” measurements).  For this reason, the wakes of the EGVs strongly influenced the design of the FERRA.  

Second, the density of measurements in the radial and circumferential directions is the next-most-important factor in 

reducing measurement error.  Using heterogeneous rake probe arrangements allowed for sampling the experimental 

flowfield at sufficient resolution to achieve accurate measurement of the total pressures, total temperatures, and mass 

flow rate in the experiment.  CFD solutions provide a valuable resource for determining the required resolution. 
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Figure 1. The BLI2DTF Experimental Setup in the 8x6 Wind Tunnel 

 
Figure 2. Cross-section of BLI2DTF Propulsor and Drive Rig 
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Figure 3 Sensitivity of Adiabatic Efficiency Calculation to Changes in Pressure and Temperature Ratios 

 
Figure 4. Front View of Propulsor with AIP Rakes Installed 

 
Figure 5. Region of Primary Interest, Showing 1) AIPRRA, 2) Fan, 3) EGVs, and 4) FERRA 
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Figure 6. Rotating Rake Arrays; a) AIPRRA, b) FERRA 

 
Figure 7. AIPRRA Type 176 (left) and 177 (right) Rakes 

 
Figure 8. FERRA Type 273 (left) and 274 (right) Rakes 
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Figure 9. CFD Predicted Conditions. a) AIPRRA PT, b) AIPRRA TT, c) FERRA PT, d) FERRA TT 
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Figure 10. Flowchart of the CFD Sampling and Analysis Algorithm 
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Figure 11. Assignment of Areas for Pressure Probes 

 
Figure 12. Total Pressure Deviations, a) 8-Rake FERRA and b) 9-Rake FERRA 
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Figure 13. Total Temperature Deviations, a) 8-Rake FERRA and b) 9-Rake FERRA 

 
Figure 14. Example of Sampling a Simplified PT Field 
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Figure 15. Effects of Multiple Variables on Standard Deviation of Mass Flow.  Arrow shows minimum recommended conditions. 

 

 
Figure 16. Pre-Test Uncertainty Estimates for Adiabatic Efficiency 
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Figure 17. Pre-Test Uncertainty Estimates for Mass Flow Rate 

 
Figure 18. Comparison of Total Pressures at the AIPRRA. a) CFD Prediction, b) CFD Prediction Interpolated to Experiment 

Probe Positions, c) Experiment 

 

 
Figure 19. Comparison of Total Temperatures at the AIPRRA. a) CFD Prediction, b) CFD Prediction Interpolated to Experiment 

Probe Positions, c) Experiment 
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Figure 20. Comparison of Total Pressures at the FERRA. a) CFD Prediction, b) CFD Prediction Interpolated to Experiment Probe 

Positions, c) Experiment 

 
Figure 21. Comparison of Total Temperatures at the FERRA. a) CFD Prediction, b) CFD Prediction Interpolated to Experiment 

Probe Positions, c) Experiment 

 

  

 

 


